Name: \qquad Period: \qquad
Your Notes: DO NOT TURN THIS IN!

Quadratic Equations

Standard Form

$f(x)=a x^{2}+b x+c$
a, b and c are real numbers
Axis of symmetry is the line that runs down the center of the parabola through the vertex.

$$
\mathrm{x}=-\frac{b}{2 a}
$$

Example 1

Find the axis of symmetry

$$
\begin{aligned}
& y=x^{2}+16 x+71 \\
& \mathrm{f}(\mathrm{x})=1 \mathrm{x}^{2}+16 \mathrm{x}+71 \\
& \mathrm{x}=-\frac{b}{2 a}=-\frac{16}{2(1)}=-\frac{16}{2}=-8
\end{aligned}
$$

The axis of symmetry is $x=-8$.

1. Rewrite the equation in standard form if needed.
2. Identify the values for a and b.
3. Apply the formula and solve for x.

Practice 1

Find the axis of symmetry

$$
y=2 x^{2}+36 x+170
$$

Example 2

Find the axis of symmetry

$$
162 x+731=-y-9 x^{2}
$$

Rewrite the equation in standard form:

1. Add $9 x^{2}$ to both sides of the equations.
$9 x^{2}+162 x+731=-y$
2. Divide/multiply both sides of the equation by -1 .
$-9 x^{2}-162 x-731=y$
3. Switch the equation around.
$y=-9 x^{2}-162 x-731$
$\mathrm{x}=-\frac{b}{2 a}=$

Example 3

Find axis of symmetry
$\frac{1}{2}(y+4)=(x-7)^{2}$
$y+4=2(x-7)^{2}$
$y=2(x-7)^{2}-4$

Vertex Form

$\mathrm{f}(\mathrm{x})=\mathrm{a}(\mathrm{x}-\mathrm{h})^{2}+\mathrm{k}$
The vertex is (h, k).
The axis of symmetry is h.

Example 2
Describe the transformations

$$
f(x)=-2(x+5)^{2}-3
$$

1. Vertical shift down by 3 units
2. Horizontal shift left by 5 units,
3. Compress/expand by 2 units
4. Reflect over the x-axis.

Practice 2

Find the axis of symmetry

$$
6 x^{2}+12 x+y+13=0
$$

Practice 3

Find axis of symmetry and the vertex.
$-4 y+16=(x-1)^{2}$

Axis of Symmetry and Vertex
Axis of Symmetry and Vertex

