Solving Quadratic Equations with Quadratic Formula

$$
f(x)=a x^{2}+b x+c
$$

Quadatic Formula is $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Quadratic Formula can be used to solve for any quadratic equation. When solving quadratic equations, we are finding the roots/zeros for the quadratic functions.

Examples	Steps	Practice Problems
$f(x)=x^{2}+6 x-16$ What is/are the root(s)/zero(s) for this function? 1. $x^{2}+6 x-16=0$ 2. $\mathrm{a}=1, \mathrm{~b}=6, \mathrm{c}=-16$ 3. $x=\frac{-(6) \pm \sqrt{(6)^{2}-4(1)(-16)}}{2(1)}$ 4. $\begin{aligned} & x=\frac{-(6) \pm \sqrt{36-(64)}}{2(1)} \\ & x=\frac{-(6) \pm \sqrt{100}}{2} \end{aligned}$	Solving Quadratic Equation $f(x)=a x^{2}+b x+c$ 1. Set the equation $=0$, in the standard form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ $=0$. 2. Identify the values for a, b and c. 3. Replace the variables with the corresponding values in the formula. 4. Simplify the solution(s).	$\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}-11 \mathrm{x}+28$

$$
9 x^{2}=-12 x-4
$$

$6 x^{2}-x=2$
Find the root(s) for this equation?

1. $6 x^{2}-x-2=0$
2. $\mathrm{a}=6, \mathrm{~b}=-1, \mathrm{c}=-2$
3. $x=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(6)(-2)}}{2(6)}$
4. $x=\frac{1 \pm \sqrt{1-(-48)}}{12}$

$$
\begin{aligned}
& x=\frac{1 \pm \sqrt{49}}{12} \\
& \mathrm{x}=\frac{1 \pm 7}{12}, \text { which mean } \\
& x=\frac{1+7}{12}=\frac{8}{12}=\frac{2}{3}
\end{aligned}
$$

and

$$
\begin{gathered}
x=\frac{1-7}{12}=-\frac{6}{12}=-\frac{1}{2} \\
x=-\frac{1}{2}, \quad \frac{2}{3}
\end{gathered}
$$

$2 x^{2}-4 x+5=0$ What is/are the $\operatorname{root}(\mathrm{s})$ for the equation? 1. Rewrite the equation because it is already set equal to 0 . $2 x^{2}-4 x+5=0$ 2. $a=2, b=-4, c=5$ 3. $x=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(2)(5)}}{2(2)}$ 4. $\begin{aligned} & x=\frac{4 \pm \sqrt{16-40}}{4} \\ & x=\frac{4 \pm \sqrt{-24}}{4} \\ & x=\frac{4 \pm \sqrt{24 i}}{4} \\ & x=\frac{4 \pm 2 i \sqrt{6}}{4} \\ & x=\frac{2 \pm(\sqrt{6}) i}{2} \end{aligned}$	Notes -24 under the radical $(\sqrt{ })$ can be written as $\sqrt{24 i}$, which will allow us to simplify the solution. This type of solution is known as complex/imaginary roots	$10 x^{2}=-5 x-1$

When solving quadratic equations with quadratic formula, you may obtain 2 real roots/zeros, 2 complex/imaginary roots or just one root. The type of roots/zeros can be determined by calculating the discriminant, D.

Discriminant, $\mathrm{D}=b^{2}-4 a c$
When $\mathrm{D}>0$, you will have 2 real roots/zeros.
When $\mathrm{D}<0$, you will have 2 complex/imaginary roots
When $\mathrm{D}=0$, you will have only $1 \mathrm{root} /$ zero.
For the equation $2 x^{2}-4 x+5=0$, the discriminant is less than $0(-24<0)$; therefore we have 2 complex roots.

Use the discriminant to determine the type of solutions for the quadratic equation $4 x^{2}+12 x=-9$ and then find the root(s).

1. $4 \mathrm{x}^{2}+12 \mathrm{x}+9=0$
2. $a=4, b=12, c=9$
3. $\mathrm{D}=12^{2}-4(4)(9)$
4. $\mathrm{D}=144-144=0$
5. This equation has 1 real solution: root/zero

To find the root(s), use the quadratic formula.
$x=\frac{-(12) \pm \sqrt{0}}{2(4)}$
$x=\frac{-12}{8}=-\frac{3}{2}$

Calculating the discriminant	$9 \mathrm{x}^{2}=30 \mathrm{x}-25$

$D=b^{2}-4 a c$

1. Set the equation equal 0 in standard form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ $=0$.
2. Identify the values for a, b, and c.
3. Substitute the variables with the corresponding values.
4. Simplify
5. Draw your conclusion. $\quad x^{2}+1=-x$
