Solving Quadratic Equations with Quadratic Formula $\hat{\mathbf{f}}(\mathbf{x}) = \mathbf{a}\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c}$ Quadatic Formula is $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$ Quadratic Formula can be used to solve for any quadratic equation. When solving quadratic equations, we are finding the roots/zeros for the quadratic functions. **Practice Problems Examples** Steps $g(x) = x^2 - 11x + 28$ $f(x) = x^2 + 6x - 16$ **Solving Quadratic Equation** $f(x) = ax^2 + bx + c$ What is/are the root(s)/zero(s) for this function? 1. $x^2 + 6x - 16 = 0$ 1. Set the equation = 0, in the 2. a = 1, b = 6, c = -16standard form $ax^2 + bx + c$ 3. $x = \frac{-(6)\pm\sqrt{(6)^2-4(1)(-16)}}{2(1)}$ = 0.2. Identify the values for *a*, *b* and c. 4. $x = \frac{-(6)\pm\sqrt{36-(64)}}{2(1)}$ 3. Replace the variables with the corresponding values in $x = \frac{-(6) \pm \sqrt{100}}{2}$ the formula. 4. Simplify the solution(s). $x = \frac{-6 \pm 10}{2}$, which mean $9x^2 = -12x - 4$ $x = \frac{-6-10}{2} = -\frac{16}{2} = -8$ $x = \frac{-6+10}{2} = \frac{4}{2} = 2$ x = -8, 2 $6x^2 - x = 2$ Find the root(s) for this equation? 1. $6x^2 - x - 2 = 0$ 2. a = 6, b = -1, c = -23. $x = \frac{-(-1)\pm\sqrt{(-1)^2-4(6)(-2)}}{2(6)}$ 4. $x = \frac{1 \pm \sqrt{1 - (-48)}}{12}$ $-12x - 4 = 9x^2$ $x = \frac{1 \pm \sqrt{49}}{12}$ $x = \frac{1\pm7}{12}$, which mean $x = \frac{1+7}{12} = \frac{8}{12} = \frac{2}{3}$ and $x = \frac{1-7}{12} = -\frac{6}{12} = -\frac{1}{2}$ $x = -\frac{1}{2}, \frac{2}{3}$

	1	2)
$2x^2 - 4x + 5 = 0$		$10x^2 = -5x - 1$
What is/are the root(s) for the		
equation?		
1. Rewrite the equation		
because it is already set		
equal to 0.		
$2x^2 - 4x + 5 = 0$		
2. $a = 2, b = -4, c = 5$		
3. $x = \frac{2(2)}{2}$		
3. $x = \frac{-(-4)\pm\sqrt{(-4)^2-4(2)(5)}}{2(2)}$ 4. $x = \frac{4\pm\sqrt{16-40}}{4}$		
$x = \frac{4 \pm \sqrt{-24}}{4}$	Notes	
x =	_	
	-24 under the radical ($$) can be	
$x = \frac{4 \pm \sqrt{24i}}{4}$	written as $\sqrt{24i}$, which will allow us	
1	to simplify the solution. This type	
$x = \frac{4 \pm 2i\sqrt{6}}{4}$	of solution is known as	
	complex/imaginary roots	
$x = \frac{2 \pm (\sqrt{6})i}{2}$		
x = 2		
XX /1 1 1 1 / · · · / ·		
When solving quadratic equations with quadratic formula, you may obtain 2 real roots/zeros, 2		
complex/imaginary roots or just one root. The type of roots/zeros can be determined by calculating the		
discriminant, D.		
Discriminant, $D = b^2 - 4ac$		
When $D > 0$, you will have 2 real roots/zeros.		
When $D < 0$, you will have 2 complex/imaginary roots		
When $D = 0$, you will have only 1 root/zero.		
For the equation $2x^2 - 4x + 5 = 0$, the discriminant is less than 0 (-24 < 0); therefore we have 2 complex roots.		
For the equation $2x^2 - 4x + 5 = 0$, the		therefore we have 2 complex roots.
Use the discriminant to determine	Calculating the discriminant	$9x^2 = 30x - 25$
the type of solutions for the	$\mathbf{D} = \mathbf{b}^2 - 4\mathbf{a}\mathbf{c}$	
quadratic equation $4x^2 + 12x = -9$	1. Set the equation equal 0 in	
and then find the root(s).	standard form $ax^2 + bx + c$	
	= 0.	
1. $4x^2 + 12x + 9 = 0$	2. Identify the values for a, b,	
2. $a = 4, b = 12, c = 9$	and c.	
3. $D = 12^2 - 4(4)(9)$	3. Substitute the variables with	
4. $D = 144 - 144 = 0$	the corresponding values.	
5. This equation has 1 real	4. Simplify	
solution: root/zero	5. Draw your conclusion.	$x^{2} + 1 = -x$
To find the root(s), use the		
quadratic formula.		
$-(12) + \sqrt{0}$		
$x = \frac{-(12) \pm \sqrt{0}}{2(4)}$ $x = \frac{-12}{2(4)} = -\frac{3}{2}$		
-12 3		
$x = \frac{12}{2} = -\frac{3}{2}$		
8 2		
	1	1