Sequence \& Series

Name: \qquad
\qquad Period: \qquad

Slide 1 - Multiple Choice	Your Response
	Available Choices:
What formula you have to use to find the rate of change?	- Point Slope Formula - Slope Formula - Quadratic Formula
- Slope Intercept Formula	

Slide 2 - Draggable	Your Response	

Slide 3 - Draggable	Your Response
The slope is positive indicate the rate of change is decreasing?	
True \mid False	

Slide 4 - Text Response	Your Response
Average Rate of Change - What is the rate of change for the cost of four movie tickets is $\$ 30$ and the cost of seven tickets is $\$ 52.50$?	

Slide 5 - Multiple Choice	Your Response
How do you determine if this data is an arithmetic sequence?	Available Choices: - Use the slope formula to calculate the rate of change at different intervals. If the rate of change is the same, then it is an arithmetic sequence. - Use the slope formula to calculate the rate of change at two intervals. If the rate of change is the same, then it is an arithmetic sequence. - Use the slope formula to calculate the rate of change at one interval because that is enough information to determine arithmetic sequence.

Slide 6

Arithmetic Sequence

- A sequence such as $1,5,9,13,17$ or $12,7,2,-3,-8,-13,-18$ which
has a constant difference between terms. The first term is a_{1}, the
common difference is d , and the number of terms is n .

Slide 7

Arithmetic Sequence

- The explicit formula for an arithmetic sequence is $a_{n}=a_{1}+(n-1) d$.
a_{1} is the first term of the sequence.
d is the common difference of the sequence
n is the position number in the sequence.
$2,6,10,14,18$
- What are the values of a_{1} and d ?

Slide 8 - Text Response	Your Response
Arithmetic Sequence - The explicit formula for an arithmetic sequence is $a_{n}=a_{1}+(n-1) d$. a_{1} is the first term of the sequence. d is the common difference of the sequence. n is the position number in the sequence. $3,6,12,15,18$ - What are the values of a_{1} and d ?	

Slide 9

Arithmetic Sequence

- Is this sequence an arithmetic sequence? Explain using "common difference."
$1,4,7,10,12,15$

Slide 10-Text Response	Your Response
$\begin{aligned} & \text { - Is this sequence an arithmetic sequence? Explain using "common } \\ & \text { difference." } \\ & \quad-5,-3,-2,0,2,4 \end{aligned}$	

Slide 11 - Text Response	Your Response
Arithmetic Sequence - Is this sequence an arithmetic sequence? Explain using "common $-1,3,-1,3,-1$	

Slide 12

Arithmetic Sequence: Explicit Formula

- The explicit formula for an arithmetic sequence is $a_{n}=a_{1}+(n-1) d$.
a_{1} is the first term of the sequence.
d is the common difference of the sequence.
n is the position number in the sequence.
$2,6,10,14,18$
- The explicit formula for this arithmetic sequence is
$a_{n}=2+(n-1) 4$
$a_{n}=2+4 n-4$
$a_{n}=4 n-2$

Slide 13

Arithmetic Sequence: Explicit Formula

- The explicit formula for an arithmetic sequence is $a_{n}=a_{1}+(n-1) d$.
-What is the explicit formula for this sequence?
$-21,-15,-9,-3$.

Slide 14 - Text Response

Your Response

Arithmetic Sequence: Explicit Formula \& nth Term

- The explicit formula for an arithmetic sequence is $a_{n}=a_{1}+(n-1) d$.
$1,6,11,17,23 \ldots$

What is the explicit formula for the above sequence?
-What is the value of a_{15} ?

Slide 15

Arithmetic Sequence: Recursive Formula

- A recursive formula designates the starting term, a_{1}, and the $\mathrm{n}^{\text {th }}$ term of the sequence, a_{n}, as an expression containing the previous term (the term before it), a_{n-1}.
$a_{n}=a_{n-1}+d$

1, 6, 11, 17, 23...

- The recursive formula for the above sequence is $a_{n}=a_{n-1}+5$.

Slide 16

Arithmetic Sequence: Recursive Formula

- Given: $a_{n}=3 a_{n-1}+5, a_{1}=11$
- Find the first five terms.

Slide 17

What is the explicit formula for this pattern?

Slide 18 - Text Response	Your Response	
	What is the explicit formula for this pattern?	

Slide 19 - Text Response	Your Response
Find the next two patterns.	

Slide 20

Summation

- Summation is the process of adding things together. The summation symbol is \sum.
- Find the sum of this series: $1,6,11,16,21,26,31,36,41,46,51,56$, 61, 66, 71

Adding: $1+6+11+16+21+26+31+36+41+46+51+56+61+66+71=$ 540

Slide 21

Summation: Arithmetic Series

- The formula for the summation for an arithmetic series is

$$
\left.\sum_{i=1}^{n} a_{i}=\frac{n}{2}\right)\left(a_{1}+a_{n}\right)
$$

- 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71
- $n=15$
$\left(\frac{15}{2}\right)(1+71)=540$
- $a_{1}=1$
- $a_{n}=a_{15}=71$

Slide 22

Summation: Partial Sum

- Find the $35^{\text {th }}$ partial sum for $1,6,11,16,21,26,31,36 \ldots$
- Use the Explicit Formula
$a_{n}=a_{1}+(n-1) d$
$a_{n}=1+(n-1) 5$
$a_{n}=1+5 n-5$
$a_{n}=5 n-4$
- Find the value for a_{35}.
$a_{5}=5(35)-4=171$
- Apply summation formula
$\left(\frac{13}{2}\right)(1+171)=3010$

Slide 23 - Draggable	Your Response
Sequence- Is there a common difference in this sequence?	

Slide 24

Geometric Sequence

a sequence of numbers where each term after the first is found by multiplying the previous one by a fixed, non-zero number called the common ratio.

- The Explicit Formula for Geometric Sequence: $a_{n}=a_{1}(r)^{n-1}$
- 1, 2, 4, 8, 16, 32 ...
- Multiple of 2, this is call common ratio.
- The explicit formula for this geometric sequence is $a_{n}=1(2)^{n-1}$

Slide 25

Geometric Sequence: Explicit Formula

- Explicit Formula for Geometric Sequence: $a_{n}=a_{1}(r)^{n-1}$ 4, 2, 1, 0.5, 0.25
- What is a_{1} ?
- What is r ?
- What is the explicit formula?

Slide 26 - Text Response	Your Response
	Geometric Sequence: Explicit Formula
	- Explicit formula for Geometric Sequence: $a_{n}=a_{1}(r)^{n-1}$
	Find the explicit formula for $-1,3,-9,27,-81 . .$.

Slide 27

Geometric Sequence: Recursive Formula

- Recursive Formula for Geometric Sequence: $a_{n}=r * a_{n-1}$

Slide 28

Summation: Geometric Series

$$
\sum_{i=1}^{n} a_{i}=a_{1}\left(\frac{1-r^{n}}{1-r}\right)
$$

Slide 29 - Drawing	Your Response
Find the explicit formula for this pattern?	
Explicit Formula	

Any question you want to ask the teacher about this topic?

