Solving Radical Equations with a Single Variable.

Radical equations contain the radical (square root) sign (symbol) and/or fractional exponents. The strategy for solving radical equations is to get rid of the radicals. Radical expression can be expressed in term of exponent.

$$\sqrt{u} = u^{\frac{1}{2}}$$
, so for $\sqrt{u-1} = (u-1)^{\frac{1}{2}}$
 $\sqrt[3]{u} = u^{\frac{1}{3}}$
 $\sqrt[4]{u} = u^{\frac{1}{4}}$

Example Problems	Steps	Practice Problems
Example 1		Practice 1
$\sqrt{x} - 8 = 0$ 1. $\sqrt{x} = 8$ 2. Radical is square root. 3. $(\sqrt{x})^2 = 8^2$ 4. No simplification requires. 5. $x = 64$ 6. $\sqrt{64} - 8 = 0$? $8 - 8 = 0$	 Solving Radical Equations Isolate radical Identify the radical. Raise both sides of an equation to the <i>n</i>th power. Simplify by using algebraic operations. Solve for the variable. Check your answer by substituting. 	$\sqrt{2x+3} = 4$
Example 2 $2\sqrt{x+1} = 14$		Practice 2 $-3\sqrt{2x+1} = -15$
1. $\sqrt{x + 1} = \frac{14}{2} = 7$ 2. Radical is square root. 3. $(\sqrt{x + 1})^2 = 7^2$ 4. $x + 1 = 49$ 5. $x = 48$ 6. $2\sqrt{48 + 1} = 14?$ $2\sqrt{49} = 14?$ 2 * 7 = 14 O		
Example 3 $5\sqrt[3]{4x+3} = 15$		Practice 3 : Create your own radical equation and solve it.
1. $\sqrt[3]{4x+3} = \frac{15}{5} = 3$ 2. Radical is cube root 3. $(\sqrt[3]{4x+3})^3 = 3^3$ 4. $4x+3=27$ 5. $4x = 24$ x = 6 6. $5\sqrt[3]{4(6)+3} = 15?$ $5\sqrt[3]{27} = 15?$ $5(3) = 15 \odot$		

Example 4
$$(6b)^{\frac{1}{2}} = (8 - 2b)^{\frac{1}{2}}$$
I. Rewrite the equation in radical
form.Practice 4
 $\sqrt{2m - 6} = \sqrt{3m - 14}$ 1. $\sqrt{6b} = \sqrt{8} - 2b$
 $2 = (\sqrt{8} - 2b)^2$ 2. Raise both sides of an equation
to the *n*th power.3.3. $6b = 8 - 2b$
 $8b = 8$
 $b = 1$ 2. Raise both sides of an equation
to the *n*th power.9.5. $(20 - r)^{\frac{1}{2}} = r$
 $2 : $(\sqrt{20 - r})^2 = (r)^2$
 $3 : $20 - r = r^2$
 $4 : 0 = r^2 + r - 20$
 $5 : 0 = (r + 5)(r - 4)$
 $6 : r = (-5, 4)$ Fractice 5
 $\sqrt{56 - r} = r$ Example 6
 $\sqrt{2v - 7} = v - 3$
 $1 : $(\sqrt{2v - 7})^2 = (v - 3)^2$
 $2 : 2v - 7 = v^2 - 6v + 9$
 $3 : 0 = v^2 + 8v + 16$
 $4 : 0 = (v + 4)(v + 4)$
 $5 : 0 = (v + 4)^2$
 $6 : v = -4$ Fractice 6
 $x = 5 + (3x - 11)^{\frac{1}{2}}$ When solving radical equations, you may encounter extraneous solution. An extraneous solution that does not satisfy the original equations, and therefore *must not* be listed as an actual solution.
Example 1: $\sqrt{3x} + 6 = 0$
 $\sqrt{2x - 5} = 0$$$$

1. $\sqrt{3x} = -6$ 2. 3x = 36

3. x = 12

4. $\sqrt{3(12)} = -6?$ EXTRANEOUS SOLUTION!